Learn
Solution
Let Jake and Paul’s speeds be J and P respectively.J + P = 7J = 7 − P(24/J) + (24/P) = 1424P + 24( 7 − P) = 14P(7...
Register & Unlock access to Prep for free
Solution
.hez-title-solution{display: none;}
Keynote
Solve using options:Substitute Jake's Speed in J + P = 7 and check whether J is greater than P.If J is greater than P...
0
Speed, Time & Distance questions available for your Free Practice
0
Quantitative Ability questions available for your Free Practice
LICSymbols & NotationsProfit and LossAveragesGATERatio & ProportionAuthors & BooksPercentagesBar GraphsMiscellaneous - GAFill in the BlanksXATWord BuildingQuadratic EquationsGREVocabularyAlgebraMathematical InequalitiesTime & WorkCurrent Affairs 2015ExpansionsScience & TechnologyNMATOrder arrangementLine GraphsCoding & DecodingData ProblemsSimple EquationsPermutations & CombinationsMiscellaneous - LRTabular DataCATGeneralInput - OutputProgressions & SeriesSyllogismsComputer KnowledgeQuantitative AbilityNumber SeriesProbabilityVerbal AbilityTaglinesSSCEnvironment & BiodiversityCaselet DISimple & Compound InterestLogarithmsVerbal ReasoningSBIGeometrySpot the ErrorPlacement TestsCMATData InterpretationCloze TestQuadratic RelationsMATPie ChartParajumblesBlood RelationsSentence ImprovementSeriesTrigonometryAPPSCClocks & CalendarsGeneral AwarenessMiscellaneous - QASpeed, Time & DistanceGMATSet TheoryNumbersMensurationArithmetic OperationsUPSCNumber SystemFunctionsComputersRBILogical ReasoningImportant DaysDirectionsCoordinate GeometryInequalitiesTCSMarketingIBPSMiscellaneous - VAPolityMixtures and AllegationsPassagesArrangements & RearrangementsCircular ArrangementIIFTData Sufficiency - LRAnalogies
Practice
0
questions for Free