Learn

QUESTION
Q
The maximum value of Sin4θ + Cos4θ is ?

The maximum value of Sin4θ + Cos4θ is ?

A

1

B

2

C

3

D

1/3

E

3/2

A

1

B

2

C

3

D

1/3

E

3/2

Solution

Sin4θ + Cos4θ = (Sin2θ + Cos2θ)2 − 2Sin2θCos2θ = 1 −...

Sin4θ + Cos4θ

= (Sin2θ + Cos2θ)2 − 2Sin2θCos2θ

= 1 − [(2SinθCosθ)2]/2

= 1 − [(Sin2θ)2/]2

Sin22θ is always positive; hence the maximum value is obtained when sin22θ is equal to zero.

Hence, the maximum value is

= 1 − 0

= 1

 

Register & Unlock access to Prep for free

Save & Analyse
your Practice

Learn, Practice &
Improve fast

Improve your
Accuracy

Track & Improve
Scores in all Topics

Session Time
Tracker

Review your
Performance

Insights on others
Performance

View Performance
Reports

Achieve your
Target

Flexible Learning &
Practice

Question Time
Tracker

Improve your
exam scores

Solution

.hez-title-solution{display: none;}

Keynote

#hez-keynote-title{display: none;}

Study the table carefully and answer the following questions Annual Income of Various Individuals over the Years(Income in Lakh Rupees)

|||||||||||

World Theatre Day is celebrated on ________.

|||||||

If a, b, and c are three consecutive odd integers such that 10f a + b ?

|||||

0 Trigonometry questions available for your Free Practice
0 Quantitative Ability questions available for your Free Practice
Practice 0 questions for Free